International Structural Genomics Organization

Promoting worldwide cooperation and collaboration in structural genomics
Success of the genome sequencing projects and major advances in methods of protein structure determination have led the structural biology community to propose the large scale mapping of protein structure space. This structural genomics initiative aims at the discovery, analysis and dissemination of three-dimensional structures of protein, RNA and other biological macromolecules representing the entire range of structural diversity found in nature. Such a complete knowledge will facilitate fundamental understanding and applications in biology, agriculture and medicine. The three-dimensional structures will be crucial for rational drug design, for advancing catalysis in chemistry and biotechnology, and for diagnosis and treatment of disease, as well as for advancing basic principles of biology. A broad collection of structures will provide valuable biological information beyond that which can be obtained from individual structures.

This opportunity is made possible by rapid progress in several related key technologies. These include the construction of synchrotrons and high-field NMR instruments, the MAD method of phase determination, high throughput cloning and recombinant expression, a flood of information from genome sequencing projects, and bioinformatic methods for fold assignment, model building, and prediction of function.

After several years of discussions and co-operations among the structural genomics communities, international collaborative agreement was passed at the 2nd International Structural Genomics Meeting (Airlie House Meeting) held in Virginia, USA, on April 4-6, 2001 and created the International Structural Genomics Organization (ISGO).

The following document outlines issues related to achieving this expansion of knowledge. The goal is to encourage harmonious cooperation among a broad range of public and private sector institutions in the international effort to characterize macromolecular structures in living organisms on a pan-genomic scale.

ISGO Policies >>>